
Audit Report
Produced by CertiK

for

March 9th, 2020



CertiK Review Report for bZx

CertiK Eng Team
Mar 9, 2020

Version 2.0.0

Executive Summary
While this Review does not constitute a full audit, in the time allocated for
this Review, we have not found any vulnerabilities arising from the changes in
the pull request.



Dislaimer
This report is subject to the terms and conditions (including without
limitation, description of services, con�dentiality, disclaimer and limitation
of liability) set forth in the Veri�cation Services Agreement between CertiK
and bZx Network (the “Company”), or the scope of services/veri�cation, and
terms and conditions provided to the Company in connection with the
veri�cation (collectively, the “Agreement”). This report provided in
connection with the Services set forth in the Agreement shall be used by the
Company only to the extent permitted under the terms and conditions set
forth in the Agreement. This report may not be transmitted, disclosed,
referred to or relied upon by any person for any purposes without CertiK’s
prior written consent.

As there have been numerous interactions with the Company throughout the
entire duration of this audit, and as the codebase target for the audit has
evolved over said duration, not all of CertiK’s opinions or comments have
necessarily made it into this �nal culmination.

Background
The bZx protocol recently su�ered two losses. This �rst one ocurred at early
morning UTC, Feb 15, 2020, and the second early morning UTC, Feb 18.

The �rst attack was caused by a bug in the function takeOrderFromiToken  in
the base bZx protocol. Since withdrawalAmount = newLoanAmount  and the
loan had an empty data �eld, the oracle was never consulted, and as a result,
the protocol ended up with an under-collaterized loan (with respect to non-
manipulated prices), which is undesired behavior.

This logical �aw was �xed in the commit
7cfebd9e289d1f7ee541d5a7556e3f679fa216af  on Feb 17 and is not within

the scope of this audit.

The second attack on the other hand did not abuse any logical bugs. Rather, it
abused a weak oracle. The bZx protocol used to use Kyber as an on-chain price
oracle. Using a very large bZx �ash loan, the attacker drove the price of the
sUSD  token up on Kyber using their automated market maker (AMM). She



then proceeded to take a loan, denominated in ETH  and collateralized by
sUSD . Since bZx uses Kyber as an on-chain price oracle, the protocol over-

valued the collateral. Consequently, it again ended up with an under-
collateralized loan, with respect to non-manipulated prices. It is this attack
that is meant to be �xed by the following pull request.

Scope of work
The scope of the review was PR #30 in the bZx monorepo, from branch
rs_update  to development .

Link to PR: https://github.com/bZxNetwork/bZx-monorepo/pull/30/�les

development  commit hash:
c5fdab1eb7e0f158841671c78d324045cb438f3c

rs_update  commit hash:
9a17e7349624e4f298b4d20ad12142c70dff7b2b

Note: The monorepo constists of many packages, all path references are w.r.t.
/packages/contracts .

The PR consists of 14 commits with dates ranging from Feb 27 to Mar 5. The
PR changes 17 �les in the base protocol ( /contracts ) and 5 �les in the
extension ( /extensions ). It is those �les that are are part of the scope of the
review.

Assumptions

In this Review, we assumed the operators and admins to be honest. Hence
while some changes might lead to a lack of correctness (e.g. some users might
not be able to withdraw), such e�ects are not within the scope. This is because
in this emergency case, admins can potentially �x this by e.g. submitting an
onlyWhitelist  transaction themselves for the user, or potentially by

relaxing some limitations, and redeploying the contracts. What we are
interested in are security bugs, i.e. those that lead to unexpected, unrecoverable
situations such as the ones that unfolded earlier.

https://github.com/bZxNetwork/bZx-monorepo/pull/30/files


Changes
We will now proceed to summarize the changes made in the PR.

Note: For the following, P._  represents functions in all three touched pToken
contracts, namely:

PositionTokenLogic ,

PositionTokenLogic_WBTCShort , and

PositionTokenLogicV2 .

Whitelist

contracts/modules/LoanHealth_MiscFunctions4.sol  adds a new
function setCallerWhitelist(address,bool) .

contracts/modifiers/Whitelistable.sol  is a new �le that adds the
onlyWhitelist  function modi�er.

Functions that are now whitelisted:

LoanHealth_MiscFunctions4.liquidatePosition

LoanHealth_MiscFunctions4.liquidateWithCollateral

Owner

Functions that have now been set to onlyOwner :

LoanTokenLogicV4.borrowTokenFromDeposit

LoanTokenLogicV4.marginTradeFromDeposit

LoanTokenLogicV4_Chai.borrowTokenFromDeposit

LoanTokenLogicV4_Chai.marginTradeFromDeposit

P.donateAsset

P.transferFrom

P.transfer



Removed functions

The PR removes a lot of both external, public, and internal functions. There
are three types of removals:

1. removing source code
Functions can still be called on the proxy (bZx system uses a targets
router), but will fallback to the default function of the enclosing contract
due to the Solidity compiler. We have checked that all of the enclosing
contracts have a default function that reverts, rendering these functions
uncallable.

2. nulled
Turned into (mathematically) pure functions of the form (...) -> 0x0 .

3. disabled
Their signature is nulled in targets  in the proxy, and the default
function on the proxy reverts in that case, again meaning they are
uncallable.

1. Removing source code

LoanMaintenance_MiscFunctions._depositPosition

LoanTokenLogicV4.flashBorrowToken

LoanTokenLogicV4_Chai.flashBorrowToken

P.mintWithEther  (all)
P.mintWithToken  (all)

P.triggerPosition

P._mintWithToken

P._triggerPosition

PositionTokenLogic.marketLiquidityFor  *

PositionTokenLogic_WBTCShort.marketLiquidityFor  *
PositionTokenLogicV2._checkTradeSize

2. Nulled

LoanHealth_MiscFunctions.closeLoan

LoanHealth_MiscFunctions.closeLoanForBorrower



LoanHealth_MiscFunctions3.closeLoanPartially

LoanMaintenance_MiscFunctions.changeCollateral

LoanMaintenance_MiscFunctions.depositPosition

LoanMaintenance_MiscFunctions.depositPositionForBorrower

LoanMaintenance_MiscFunctions.withdrawPosition

LoanMaintenance_MiscFunctions._depositPosition

LoanMaintenance_MiscFunctions2.changeTraderOwnership

LoanMaintenance_MiscFunctions2.changeLenderOwnership

LoanMaintenance_MiscFunctions2.updateLoanAsLender

3. Disabled

All functions from the following contracts have been disabled.

OrderTaking_MiscFunctions

OrderTaking_takeLoanOrderAsLender

OrderTaking_takeLoanOrderAsTrader

OrderTaking_takeLoanOrderOnChainAsLender

OrderTaking_takeLoanOrderOnChainAsTrader

OrderTaking_takeLoanOrderOnChainAsTraderByDelegate

TradePlacing_ZeroEx

Restricted to EOA

The following functions have been restricted to externally-owned accounts:

iTokens_loanManagementFunctions.paybackLoanAndClose

P.burnToEther

P.burnToToken

P.depositCollateralToLoan

Custom changes

LoanMaintenance_MiscFunctions._depositCollateral
change in require logic: now it is mandatory that depositToken ==
collateralToken of loan position



LoanHealth_MiscFunctions4._handleRollOver
owedPerDay  is not recalculated and is set to former amount

iTokens_loanManagementFunctions2.extendLoanByInterest
useCollateral  assumed to be false

P.depositCollateralToLoan
cannot use custom depositToken (always uses tradeToken)

PositionTokenLogicV2.burnToEther  (with four args)
loanDataBytes  cannot be used

PositionTokenLogicV2.burnToToken
loanDataBytes  cannot be used

PositionTokenLogicV2._burnToken
no longer calls _checkTradeSize

BZxOracle
default function()  - empty return used to be on msg.value > 0 ,
now instead on gasleft() <= 2300

add new storage mapping (address => AggregatorInterface)
public linkPricesFeeds  that stores Chainlink price feeds
new function setLinkPriceFeedsBatch  that allows to set
Chainlink price feed for tokens

_querySaneRate  used to query Kyber, now queries Chainlink

getCurrentMarginAndCollateralSize  used to call
_getExpectedRateCall , now calls _querySaneRate
_getExpectedRateCall  accepts one fewer parameter ( saneRate

assumed to be false)

_trade  - if sourceToken != destToken && txnData.length > 0 ,
now calls _verifyPriceAgreement

new function _verifyPriceAgreement  that bounds the percentage
di�erence between the local exchange rate and the corresponding
Chainlink one.
_checkTradeSize  used to switch based on tokenAddress, now it

queries _querySaneRate  to convert to ETH, and imposes a 1500 eth
cap for all tokens



Analysis
Items are labeled , , , , 

 (in decreasing signi�cance).

We see three types of changes:

1. Limiting the behavior of the protocol. As outlined in Scope of work /
Assumptions , we are interested in security implications only. We do not
see any vulnerabilities arising from these sorts of changes.

2. Eliminating most likely attack vectors / reducing complexity. While these
changes make the system less �exible and customizable, we don't see any
attack vectors arising.

3. New oracle integration. We have checked the correct implementation of
the Chainlink API. In particular, the client code makes two checks a�er
getting the price:

price != 0

price >> 128 == 0
The �rst check guarantees that the feed has address is correct and the
feed is live.
The second check is to ensure that the price is bounded by , as well as
checking that it's not negative ( latestAnswer()  returns an int ). We
see these checks as reasonable.
The code now calls Chainlink feed in the following functions that it didn't
before:

getCurrentMarginAndCollateralSize

getTradeData

getPositionOffset

checkTradeSize

as well as all functions that used to call _querySaneRate  directly before.
 While the working of these functions in the broader scope of the

system falls beyond the scope of this Review, the client views this as
desired behavior. We don't see any bugs arising out of the integration of
the new oracle.

In summary, no vulnerabilities have been found due to the new changes.




